Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add filters

Database
Language
Document Type
Year range
1.
J R Soc Interface ; 17(168): 20200144, 2020 07.
Article in English | MEDLINE | ID: covidwho-665024

ABSTRACT

A novel coronavirus (SARS-CoV-2) emerged as a global threat in December 2019. As the epidemic progresses, disease modellers continue to focus on estimating the basic reproductive number [Formula: see text]-the average number of secondary cases caused by a primary case in an otherwise susceptible population. The modelling approaches and resulting estimates of [Formula: see text] during the beginning of the outbreak vary widely, despite relying on similar data sources. Here, we present a statistical framework for comparing and combining different estimates of [Formula: see text] across a wide range of models by decomposing the basic reproductive number into three key quantities: the exponential growth rate, the mean generation interval and the generation-interval dispersion. We apply our framework to early estimates of [Formula: see text] for the SARS-CoV-2 outbreak, showing that many [Formula: see text] estimates are overly confident. Our results emphasize the importance of propagating uncertainties in all components of [Formula: see text], including the shape of the generation-interval distribution, in efforts to estimate [Formula: see text] at the outset of an epidemic.


Subject(s)
Basic Reproduction Number , Betacoronavirus , Coronavirus Infections/epidemiology , Coronavirus Infections/transmission , Disease Outbreaks , Models, Biological , Pneumonia, Viral/epidemiology , Pneumonia, Viral/transmission , Basic Reproduction Number/statistics & numerical data , Bayes Theorem , COVID-19 , China/epidemiology , Disease Outbreaks/statistics & numerical data , Epidemics/statistics & numerical data , Humans , Markov Chains , Monte Carlo Method , Pandemics , Probability , SARS-CoV-2 , Uncertainty
SELECTION OF CITATIONS
SEARCH DETAIL